反比例函数的图象和性质教学反思

时间:2024-01-04 15:54:09
反比例函数的图象和性质教学反思

反比例函数的图象和性质教学反思

身为一名刚到岗的教师,我们需要很强的课堂教学能力,写教学反思可以快速提升我们的教学能力,怎样写教学反思才更能起到其作用呢?以下是小编精心整理的反比例函数的图象和性质教学反思,欢迎阅读,希望大家能够喜欢。

反比例函数的图象和性质教学反思1

反比例函数的图像与性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应该有意识地加强反比例函数与正比例函数之间的对比。对比可以从以下几个方面进行:

(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?

(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?

(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?

从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。此外,在学习反比例函数图像的性质(k大于0双曲线的两个分支在一、三象限,k小于0双曲线的两个分支在二、四象限)时,学生由画法观察图象可知;而增减性由解析式y等于k比x(k不等于0),学生也容易理解,但从图象观察增减性较难,借助计算机的动态演示就容易多了。运用多媒体比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。

通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。在评价学生的学习时应关注以下几个过程:

1、关注学生学习过程,进行形成性评价

教师应以学段教学目标为背景,以本章教学目标为标准来考察学生的学习状况。在教与学的过程中,了解学生数学活动中情感与智力的参与程度和目标达到的水平,及时进行归因分析,不断积极引导和激励。同时利用诊断结果不断改进自己的教学。

2、知识技能的评价,注重学生对函数概念及反比例函数的理解水平。

本部分内容中,对知识技能的评价包括:能否理解反比例函数的概念,了解函数及其图象的主要性质;能否根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题等。对这些知识技能的评价,应当更多的关注其在实际问题情境中的意义理解。如对于反比例函数的概念及其性质,关键是体会它们在不同情境中的应用,只要学生能在具体情境应用它们解决问题即可,而不要过于关注其具体运用的熟练程度,如可以要求学生举例说明反比例函数在显示生活中的应用等。

3、发展性评价,关注数学活动引起人的变化

观察反比例函数图象获取函数相关性质的信息有较大空间,考察学生能否对信息作出灵敏反应,应用时,能否善于分析和决策,灵活支配运用知识有效的解决问题。关注并追踪这些活动所引起的学生的持久变化。

反比例函数的图象和性质教学反思2

这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。

课堂设计程序是:

例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;

例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;

例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。

在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。

利用待定系数法求反比例函数的解析式是学生必会内容,本课教学有一次函数的'基础,所以学生学习起来并不感到有多困难的。因此,本课在学习用待定系数法求函数的解析式的前面安排函数性质的复习,学习和巩固“在每个象限内”的反比例函数的增减情况的有关应用问题,例如第4小题,A(a,b),B(a-1,c)在反比例函数y=k/x(k<0)的图象上,探究a的各种不同的取值情况下,b与c的大小关系。

用待定系数法求反比例函数的解析式,安排了两个例题两个练习,题量不多重在使学生自主学习,这里着重加强对数形结合思想的应用,培养学生通过图形研究问题的习惯,另外,例题2需要学生结合三角形全等的几何知识解决点的坐标的探究,去年期末考试的最后一道试题也是在平面直角坐标系下几何问题的研究,学生不是很熟悉的,因此,培养学生各种背景下数学问题的研究很有必要。

由于在上面两块内容上用了很多时间,本课对比例系数k的几何意义没有作研究,安排在下一课再作学习。

反比例函数的图象和性质教学反思3

这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。

课堂设计程序是:例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。

在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。

《反比例函数的图象和性质教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式